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Abstract

Spectral density mapping provides direct access to protein dynamics with no assumptions as to the nature of the
molecule or its dynamic behaviour. Reduced spectral density mapping characterises a protein’s motions at a lower
experimental burden, assuming that the spectral density function J(ω) is flat aroundωH . This introduces little
error for 15N relaxation data but is less valid for13C studies, perturbing J(ωC) considerably to an extent that
depends on the nature of the molecule’s motions. We propose the fitting of spectral density at high frequencies to
a single Lorentzian and show that the true values of the spectral density lie between those determined by the two
approximations.

The measurement of15N and13C relaxation rates en-
ables the detailed study of protein dynamics (Palmer,
1997). At present, these data are commonly analysed
using the so-called ‘model-free’ approach, described
by Lipari and Szabo (1982a,b), in which the equations
for the relaxation rates (Abragam, 1961) are fitted us-
ing three parameters, namely the order parameter,S2,
an overall correlation time,τc, and a correlation time
for internal motion,τi . A fourth parameter,Rex , an
exchange rate term, may be added to the transverse
relaxation rate, if required for a satisfactory fit. The
drawbacks of this approach are becoming apparent,
in particular the loss of information on nanosecond
time-scale motions (Korzhnev et al., 1997) and the dif-
ficulty in interpreting data from anisotropic molecules
(Luginbühl et al., 1997).

Spectral density mapping has been proposed as
a more straightforward manner in which to analyse
relaxation data (Peng and Wagner, 1992a,b, 1995; Far-
row et al., 1995a; Ishima and Nagayama, 1995a; Dayie
et al., 1996; Lefèvre et al., 1996), requiring no as-
sumptions and allowing a simple reading of the mole-
cule’s dynamic behaviour. Indeed, on passing from
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relaxation rates to spectral density values, no assump-
tions as to the molecule’s shape or motions are made,
while the information we require on the dynamics of
the system are readily apparent. Models are, of course,
then necessary to extract quantitative information, but
not to interpret the data in terms of flexibility, con-
formational exchange and anisotropy, or to compare
the behaviour of related systems. Although simple to
implement and interpret, the approach has not been
widely used to date (Farrow et al., 1995b; Ishima and
Nagayama, 1995b; Peng and Wagner, 1995; Lefèvre
et al., 1996; Mer et al., 1996; van Heijenoort et al.,
1998). More regrettably perhaps, the minimum set of
three relaxation rates is not always measured, render-
ing impossible the subsequent re-analysis of relaxation
data by spectral density mapping.

Spectral density mapping simply involves solv-
ing Abragam’s equations for heteronuclear relaxation
rates (Abragam, 1961), expressed in terms of the spec-
tral density. In the full approach (Peng and Wagner,
1992a,b, 1995), a set of six independent relaxation rate
measurements (RX(Xz), RX(Xx), RX(Hz → Xz),
RX(2XzHz), RX(2XxHz), RH(Hz)) is required to
determine the spectral density,J (ω), at the five fre-
quencies appearing in the equations (0,ωX, ωH −ωX,
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Figure 1. Calculated spectral density values (in ns.rad−1) at frequencies 0,ωX , ωH − ωX , ωH , ωH + ωX plotted against the true values for
X–1H vectors relaxed by various contributions of three motions with correlation times of 4 ns, 0.4 ns and 0.04 ns. The values of the spectral
density calculated assumingJ(ω) to be flat atωH (o) and using a single Lorentzian to fit the high frequency region (x) are shown.
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ωH , ωH + ωX), and the dipolar term for the relax-
ation of the amide proton by other protons,ρHH ′ . The
equations may be expressed most simply in matrix
form:


RX(Xz)

RX(Xx)

RX(Hz → Xz)

RX(2XzHz)
RX(2XxHz)
RH (Hz)

 =


0 E A 0 6A 0

2E/3 E/2 A/2 3A 3A 0
0 0 −A 0 6A 0
0 E 0 3A 0 1

2E/3 E/2 A/2 0 3A 1
0 0 A 3A 6A 1




J (0)
J (ωX)

J (ωH − ωX)

J (ωH )

J (ωH + ωX)

ρHH ′


or

R = C× J (1)

where

A =
(µ0

4π

)2
.
γ2
Hγ2

Xh
2

4r6
HX

B = 12
Xω2

X

3

E = 3A+ B
whereµ0 is the permeability of the vacuum,γH and
γX are the gyromagnetic ratios of the1H and X nu-
clei respectively,rXH is the internuclear X–1H bond
distance and1X is the chemical shift anisotropy of X.

The values of the spectral density,J (ω), may thus
be obtained by solving the equations, or by inverting
the matrixC and applying

J = C−1×R (2)

A more practical approach in experimental terms,
referred to as ‘reduced’ spectral density mapping (Far-
row et al., 1995a; Ishima and Nagayama, 1995a; Peng
and Wagner, 1995; Lefèvre et al., 1996), requires
only three relaxation rates,RX(Xz), RX(Xx), and
RX(Hz → Xz), corresponding to the measurement
of T1, T2 and the heteronuclear NOE, respectively.
It is assumed that the spectral density function is flat

aroundωH , allowing the equations for the relaxation
rates to be simplified by settingJ (ωH − ωX) =
J (ωH) = J (ωH + ωX). The equations expressed in
matrix form are then

(
RX(Xz)

RX(Xx)

RX(Hz→ Xz)

)
=

( 0 E 7A
2E/3 E/2 13A/2

0 0 5A

)(
J (0)
J (ωX)

〈J (ωH )〉

)
(3)

For 15N data, Farrow et al. (1995a) have proposed
thatJ (0.87ωH)may be determined fromRN(Nz) and
RN(HZ → Nz) alone, from whichJ (0.921ωH) and
J (0.955ωH) may be estimated by a number of meth-
ods and used to calculateJ (0) andJ (ωN). Ishima and
Nagayama (1995a), on the other hand, have shown
that the term〈J (ωH)〉 in Equation 3 may be replaced
by J (ωH + ωN). We show here, through model cal-
culations, that, for15N relaxation data, this latter
simplification is indeed a good approximation to the
true spectral density. For13C relaxation data, however,
the approximation is less valid. We show that the ex-
tent of the discrepancy between true and determined
values of the spectral density depends on the nature of
the molecule’s motions.

We set up model spectral density functions, for
15N–1H and13C–1H vectors. The case presented here
involves three uncorrelated motions with correlation
times (τα, τβ, τγ) of 4 ns, 0.4 ns and 0.04 ns. The
weighting,aα, of the motion with the longest corre-
lation time, τα, was set to 1 whileaβ and aγ were
selected at random between 0 and 1, and the spectral
density calculated at frequencies 0ωX, ωH −ωX, ωH
andωH + ωX, for a1H frequency of 600 MHz, using

J (ω) = 2

5
.
∑
i=1,4

Ai.
τi

1+ ω2τ2
i

(4)

where

A1 = (1− aβ).(1− aγ)

A2 = aβ.(1− aγ)

A3 = (1− aβ).aγ

A4 = aβ.aγ

and
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1

τ1
= 1

τα

1

τ2
= 1

τα

+ 1

τβ

1

τ3
= 1

τα

+ 1

τγ

1

τ4
= 1

τα

+ 1

τβ

+ 1

τγ

from which model sets of relaxation rates,RX(Xz),
RX(Xx) andRX(Hz → Xz), could be recalculated,
using the full expressions given in Equation 1.

The matrix approach was applied as described
above (Equation 3). A second approach, involving the
fitting of the spectral density function aroundωH by a
single Lorentzian, characterised by a correlation time,
τH , was also used to calculate the spectral density
from the same sets of relaxation rates. Implementation
of this modification requires a fitting procedure. Here,
we applied a simulated annealing algorithm, as de-
scribed by Kirkpatrick et al. (1983) and implemented
by Goffe et al. (1994), although any other minimisa-
tion protocol might be used. The relaxation rates are
fitted using three parameters,J (0), J (ωX) and τH .
The values ofJ (ωH −ωX), J (ωH) andJ (ωH +ωX)

are recalculated using the trial value ofτH using

J (ω) = 2

5
.

τH

1+ ω2τ2
H

(5)

and the trial values of the relaxation rates,RX(Xz),
RX(Xx) and RX(Hz → Xz), are calculated as in
Equation 1.

The performance of the fitting routine may be as-
sessed by also solving the equations (Equation 3) used
in the matrix approach described above – the values
of J (ω) were found to match those obtained by the
matrix method. In addition, the error term may be
used to assess variation in the quality of the fit between
residues.

The true and calculated spectral density values at
each of the five frequencies, (0,ωX, ωH − ωX, ωH ,
ωH + ωX) are plotted in Figure 1, for both15N–1H
and13C–1H vectors. For15N relaxation, the spectral
density at 0 andωN are faithfully recalculated by both
methods. The spectral density〈J (ωH)〉, recalculated
assumingJ (ω) to be flat atωH , corresponds closely
to J (ωH +ωN), in accord with Ishima and Nagayama
(1995a), while that using a Lorentzian fit lies closer to
J (ωH − ωN).

Figure 2. Values of the spectral density (in ns.rad−1) for backbone
X–1H vectors against sequence, obtained assumingJ(ω) to be flat
at ωH (o) and using a single Lorentzian to fit between(ωH − ωX)

and(ωH +ωX) (x). (A) Data for15N–1H vectors in calcium-loaded
calbindin D9k , measured at 500 MHz1H frequency and at 35◦C.
(B) Data for13C–1H vectors inω-conotoxin MVIIA, measured at
natural abundance, at 600 MHz1H frequency and 10◦C.
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For 13C relaxation data, however, the situation is
rather different, due to the higher frequency of the13C
nucleus compared to15N: ωC is larger and closer to
ωH and the approximation thatJ (ω) is flat between
J (ωH − ωX) andJ (ωH + ωX) introduces more er-
ror than for15N (at 600 MHz1H frequency, 2ωN =
122 MHz, while 2ωC = 302 MHz). Both methods
yield J (0) well, but J (ωC) values are perturbed to
a far greater extent than wereJ (ωN) values, above
(Figure 1). Again, the assumption thatJ (ω) is flat at
ωH gives a value of〈J (ωH)〉 closest toJ (ωH +ωC),
but the divergence is greater than for15N. The values
obtained assuming a single Lorentzian do not correlate
well with the spectral density at any single frequency
aroundJ (ωH). In all cases, the true values ofJ (ωH)
andJ (ωH + ωC) lie between those calculated by the
two methods.

The failure to yield accurate values ofJ (ωC) is
perhaps the most worrying feature of the results. As
for J (ωH) above, the assumption thatJ (ω) is flat
yields reasonable values forJ (ωC) only in certain
cases. When these values diverge the most from the
true values ofJ (ωC), the use of a single Lorentzian
yields better values. Again, the trueJ (ωC) always lies
between the two values.

The consequences of these observations on the
interpretation of experimental relaxation data are illus-
trated in Figure 2. Spectral density values calculated
using the two methods are plotted against sequence
number for 15N–1H vectors in the calcium-loaded
form of calbindin, measured at 500 MHz1H frequency
and 35◦C (Kördel et al., 1992), and for the13C–1H
vectors in the 25-residueω-conotoxin MVIIA, mea-
sured at natural abundance at 600 MHz1H frequency
and 10◦C (unpublished results). As noted above, no
modification to the matrix method is required for15N
data and the spectral density at high frequency may
be most accurately referred to asJ (ωH + ωN), in
accord with Ishima and Nagayama (1995a). For the
13C data, however,J (ωC) and 〈J (ωH)〉 cannot be
reliably determined but lie between the two values
plotted. A linear fit to the plot ofJ (0) vs. J (ωX)
may be used to extract correlation times from spectral
density data (Lefèvre et al., 1996): use of the two sets
of spectral densities independently yields overall cor-
relation times,τc, for ω-conotoxin MVIIA of 3.75 ns
and 3.92 ns, assumingJ (ωH) to be flat atωH or fit-
ting with a Lorentzian, respectively. However, since
the contributions of different motions to the relaxation
of individual 13C–1H vectors may vary across the se-
quence, it may not be appropriate to fit the individual

data sets. A linear fit to the combined sets of spec-
tral densities gives a correlation time of 3.82 ns. This
behaviour can be rationalised by analysing the values
of the spectral densities and the slopes of the curves
corresponding to the various components. The slope
of the Lorentzian is given by

dJ (ω)

dω
= −4

5
.

τ3ω

(1+ ω2τ2)2
(6)

Values ofJ (ωH) for correlation times of 4, 0.4
and 0.04 ns are 0.70 × 10−11, 4.89 × 10−11, and
1.56× 10−11 ns.rad−1 respectively while the slopes
are−3.70× 10−21, −18.0× 10−21 and−0.19×
10−21 ns.rad−2 at ωH . The motion with a correlation
time of 0.4 ns is the largest in magnitude and has the
steepest slope. Thus, when this motion contributes sig-
nificantly to the spectral density, a fit with a single
Lorentzian performs better in determiningJ (ωC) and
J (ωH). Conversely, when this motion contributes lit-
tle, the fit with a single Lorentzian performs poorly
and the assumption thatJ (ω) is flat gives a better es-
timation ofJ (ωC) andJ (ωH). Since we cannot know
the relative contributions of different motions a priori,
use of both methods is necessary.
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